Metabolic triad in brain aging: mitochondria, insulin/IGF-1 signalling and JNK signalling.
نویسندگان
چکیده
Mitochondria generate second messengers, such as H2O2, that are involved in the redox regulation of cell signalling and their function is regulated by several cytosolic signalling pathways. IIS [insulin/IGF1 (insulin-like growth factor 1) signalling] in the brain proceeds mainly through the PI3K (phosphatidylinositol 3-kinase)-Akt (protein kinase B) pathway, which is involved in the regulation of synaptic plasticity and neuronal survival via the maintenance of the bioenergetic and metabolic capacities of mitochondria. Conversely, the JNK (c-Jun N-terminal kinase) pathway is induced by increased oxidative stress and JNK translocation to the mitochondrion results in impairment of energy metabolism. Moreover, IIS and JNK signalling interact with and antagonize each other. This review focuses on functional outcomes of a metabolic triad that entails the co-ordination of mitochondrial function (energy transducing and redox regulation), IIS and JNK signalling, in the aging brain and in neurodegenerative disorders, such as Alzheimer's disease.
منابع مشابه
Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer's disease indicate possible resistance to IGF-1 and insulin signalling.
Insulin like growth factor-1 receptor (IGF-1R) and insulin receptor (IR) signalling control vital growth, survival and metabolic functions in the brain. Here we describe specific and significant alterations in IGF-1R, IR, and their key substrate adaptor proteins IRS-1 and IRS-2 in Alzheimer's disease (AD). Western immunoblot analysis detected increased IGF-1R levels, and decreased levels of IGF...
متن کاملSuperoxide anion radicals induce IGF-1 resistance through concomitant activation of PTP1B and PTEN
The evolutionarily conserved IGF-1 signalling pathway is associated with longevity, metabolism, tissue homeostasis, and cancer progression. Its regulation relies on the delicate balance between activating kinases and suppressing phosphatases and is still not very well understood. We report here that IGF-1 signalling in vitro and in a murine ageing model in vivo is suppressed in response to accu...
متن کاملGenetic engineering in mice: impact on insulin signalling and action.
The expression of a number of genes encoding key players in insulin signalling and action, including insulin, insulin receptor (IR), downstream signalling molecules such as insulin receptor substrate-1 (IRS-1) and IRS-2, glucose transporters (GLUT4, GLUT2) and important metabolic enzymes such as glucokinase, has now been altered in transgenic or knockout mice. Such mice presented with phenotype...
متن کاملPossible implications of insulin resistance and glucose metabolism in Alzheimer’s disease pathogenesis
Type 2 diabetes mellitus (DM) appears to be a significant risk factor for Alzheimer disease (AD). Insulin and insulin-like growth factor-1 (IGF-1) also have intense effects in the central nervous system (CNS), regulating key processes such as neuronal survival and longevity, as well as learning and memory. Hyperglycaemia induces increased peripheral utilization of insulin, resulting in reduced ...
متن کاملH2O2 Signalling Pathway: A Possible Bridge between Insulin Receptor and Mitochondria
This review is focused on the mechanistic aspects of the insulin-induced H2O2 signalling pathway in neurons and the molecules affecting it, which act as risk factors for developing central insulin resistance. Insulin-induced H2O2 promotes insulin receptor activation and the mitochondria act as the insulin-sensitive H2O2 source, providing a direct molecular link between mitochondrial dysfunction...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society transactions
دوره 41 1 شماره
صفحات -
تاریخ انتشار 2013